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Self-organisation of droplets
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Self-organisation of droplets
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Fig. 1: (a) Side-view snapshot of a hexagonal lattice aggre-
gate of bouncing droplets. (b) Top-view snapshot of 49-droplets
square lattice aggregate. (b) 49-droplets square lattice aggre-
gate. (c) and (d) Schematic view of line-shaped aggregates,
standing for one-dimensional aggregates with (c) hexagonal
lattice or (d) square lattice. In both cases, L is the lattice
constant.

distance L= 11.5mm. For square aggregates, the binding
distance is smaller, i.e. L= 8.1mm. We can choose at
will the shape of the outer envelope of the cluster when
gathering the droplets. Using image processing, we can
follow the position of each droplet during the experiment
with a spatial resolution of 0.04mm. The movies are
recorded at 10 images per second.

Instability in one-dimensional aggregates. – We
create on the bath quasi–one-dimensional aggregates.
In this case, there are N droplets (N > 10) along one
direction and only three droplets transversally (see
fig. 1(c-d)). When slowly increasing the forcing accel-
eration γm, an onset value γV = 3.5± 0.05 g is reached
above which a spontaneous oscillation of the position
of each droplet is observed. The transient regime (see
fig. 2) to oscillation is obtained by setting γm to a
value slightly larger than γV at t= 0. We observe the
growth of a collective vibration along the aggregate.
All the droplets move at the same frequency fV with
first neighbours oscillating with opposite phases. The
oscillation mode saturates to a stationary amplitude of
typically 10% of the distance between two droplets (see
movie2.mov). Measurement of the vibration frequency
fV by FFT show very little variation with the length of
the aggregate, giving fV = 1.00± 0.05Hz for hexagonal
lattice aggregates. Note that fV ≪ fF .
This instability corresponds to a spatial modulation

of the periodic pattern. This mode is coherent all over
the aggregate structure. As the second neighbours of a
droplet have in-phase motions, the selected mode has a
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Fig. 2: Trajectories along a line of 11 droplets in hexagonal
symmetry when the forcing acceleration γm is set to a value
slightly larger than γV at t= 0. The black segment has a length
equal to L/10. Each droplet is moving in phase opposition with
its neighbours.

spatial wave number kV = πL. This is the largest wave
number possible in a vibrating structure, corresponding to
an optical mode. Along a line of droplets, we can separate
two populations into the aggregate, which can be labelled
(+) and (−) if the droplets have in-phase or out-of-phase
oscillations with a reference droplet. This creates two sub-
lattices of droplets having the same vibrational properties.
Each vibrating sub-network has a spatial periodicity which
is twice the original network periodicity.
The growth of the oscillation mode occurs at the center

of the aggregate and the stationary amplitude is weaker
on the edges. If we decrease the forcing acceleration
γm, all the droplets return to their former position. In
contrast, when we further increase our control parameter,
the oscillations of the central droplets become so large
that one of them is able to leave its potential trap and
collapses with one of its neighbours. The destruction of
the aggregate always occurs from the center, contrary to
the habitual melting process occurring at the edges.
The observed destabilization is a secondary instabil-

ity of a non-linear periodic pattern. Theoretical studies
have shown that spatially periodic systems present various
types of instabilities towards dynamical states. Depend-
ing on the symmetry breaking involved, there are ten
generic modes [9]. A large number of these solutions have
been illustrated in various experiments such as Taylor-
Couette flows [10], Rayleigh-Benard convection [11], or
directional viscous fingering [12]. The theory predicts that
the types of instabilities are related to the symmetry
breaking involved. For example, drifting domains (attested
experimentally in [13,14]) have been associated with the
breaking of left-right symmetry. The solution that we
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Packing of thin sheets

r, S

R

Z, L=2πZ

h

A simplified 
experimental system: 

conical packing Deboeuf  et al. EPL 2008

• Self-alignment / 
bundling

• Broad distributions 
of sizes



Indentation of a thin sheet
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Large deformations of thin elastic plates usually lead to the
formation of singular structures which are either linear1–4

(ridges) or pointlike5–8 (developable cones). These structures are
thought to be generic for crumpled plates3,5, although they have
been investigated quantitatively only in simplified geome-
tries1–4,6–8. Previous studies9–11 have also shown that a large
number of singularities are generated by successive instabilities.
Here we study, experimentally and numerically, a generic situa-
tion in which a plate is initially bent in one direction into a
cylindrical arch, then deformed in the other direction by a load
applied at its centre. This induces the generation of pairs of
singularities; we study their position, their dynamics and the
corresponding resistance of the plate to deformation. We solve
numerically the equations describing large deformations of
plates; developable cones are predicted, in quantitative agreement
with the experiments. We use geometrical arguments to predict
the observed patterns, assuming that the energy of the plate is
given by the energy of the singularities.

In the absence of constraints, the two main curvatures k1 and k2 of
a plane plate are zero. It is easy to bend the plate, that is, to give it a
finite curvature in one direction so that it becomes cylindrical or
conical. The curvature and thus the bending energy are then
approximately evenly spread in the plate. It scales as Eb ! Eh3, E
being the Young’s modulus of the plate material and h its thickness.
However, once bent in one direction, it is difficult to bend the plate
also in the other direction because this will tend to create a finite
Gauss curvature (G ¼ k1k2) which can be only be acquired by
stretching. The stretching energy is Es ! EhR2, R being a typical
length of the plate. As Es=Eb ! ðR=hÞ2 is large at small thickness, the
deformation is pure bending almost everywhere and there is non-
zero gaussian curvature only at singularities where the energetically
expensive stretching is localized.

Here we study a plate initially curved in one direction (the x-
direction), being clamped at two of its extremities (Fig. 1). The
clamping provides two tunable parameters: the distance between
the clamped sides d; and the two equal angles (a) between the sheet
and the horizontal direction at x ¼ ! d=2. The other two sides of
the plates, at y ¼ ! L=2, are free. The plate is cylindrical (Fig. 1a).
The cylinder axis is in the y-direction. A conical tip then pushes
down the plate at its centre. The control parameter is the vertical
displacement, Z, of the centre. This problem can be considered as
the two-dimensional extension of the elastic arch investigated by
Pippard12,13. However, whereas the elastic arch has only bending
deformations, the plate here may have stretching deformations as
well.

Indeed, when the plate centre is displaced, two d-cones linked
by an inverted ridge appear (Fig. 1a, e). As the vertical displacement
of the centre Z is increased, the two d-cones move towards the
clamped boundaries. The plate is still invariant by the x and y mirror
symmetries. When the vertical displacement reaches about
Z ¼ 10 mm, a continuous transition occurs, breaking the two
mirror symmetries. Two new d-cones appear, so that the four d-
cones form a diamond which rotates about the centre (Fig. 1b, f).
This rotation is either to the right or to the left. The plate is now

invariant by the 0-symmetry ðx; yÞ → ð " x; " yÞ. At about
Z ¼ 11:5 mm a second continuous transition breaks all symmetries.
The 4 d-cones move so that at Z ¼ 12 mm they form a trapezoid
(Fig. 1c, g). The trapezoid’s larger edge is either to the left or to the
right. The mirror symmetry y → " y is recovered. The trapezoid
grows until two of its vertices reach the free sides of the sheet
(Z ¼ 13 mm). Then there is a discontinuous transition such that
the plate becomes cylindrical (Fig. 1d). Note that these patterns are
observed when the pushing tip is exactly at the centre of the plate
(with a tolerance of about 0.1 mm). Once the adjustment is made,
different realizations of the experiment (under the same conditions)
show the two possible states following each continuous transition.
The situation described here is the more general one: if the plate is
long enough, all regimes are observed. If the length of the plate is
decreased, first the trapezoid and then the diamond regime dis-
appear: the d-cones reach the free boundaries and the discontinuous
transition to a cylinder occurs earlier.

In elasticity theory, large deformation of plates are usually
described by the Föppl von Kármán equations (FvK)14. These
nonlinear equations are notoriously difficult, mainly because they
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Figure 1 Observed patterns with a Mylar sheet of thickness h ¼ 0:35 mm, Young’s
modulus E ¼ 3:8 # 109 N m " 2 and Poisson ratio n ¼ 0:4. The aspect ratio is 2 (length
L ¼ 35 cm and width W ¼ 17:5 cm). a ¼ 20! and d ¼ 16:5 cm (see text for
definitions). The results depend only slightly on the dimensions of the sheet. a, Vertical
displacement of the centre Z ¼ 4 mm: two d-cones located at ðx ; y Þ ¼ ð ! D; 0Þ.
b, Z ¼ 11:5 mm: four d-cones forming a diamond at large rotation angle (b"30!). Two
ridges link the d-cones. c, Z ¼ 12:5 mm: 4 d-cones forming a trapezoid. d, Z ¼ 15 mm:
cylindrical shape. As Mylar has a large elastic limit there are no plastic (irreversible)
deformations during this evolution. The experiment can thus be reproduced with the same
sheet. e–g, Positions of the d-cones (black dots) in the a, b and c, respectively. The
schemes give the definition of D, b and v in the three regimes.

© 2000 Macmillan Magazines Ltd

• Dynamics of patterns

• Prediction of patterns

Boudaoud et al. Nature. 2001
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Waves at the edge

Enrico Coen

any symmetry. Instead, the complex
patterns emerge from the elastic and
geometric properties of the thin mem-
branes of which the flowers and
leaves are constructed. 

Spontaneous Symmetry Breaking
One of the main concepts used to ex-
plain how complex patterns can be
teased from simple laws is spontaneous
symmetry breaking. Symmetry breaking
is significant in almost every field of
physics, but it is especially important
in searching for the origin of patterns.

To define spontaneous symmetry
breaking, we first must define symme-
try. A two-dimensional object is sym-
metrical if you can pick it up, move it
or rotate it and place it in a new loca-
tion, and then find that the resulting
pattern is a perfect overlay of the pat-
tern that was present before you began.
An example appears in Figure 2.

The most symmetrical pattern of all
is one that is featureless and uni-
form—a void. Empty space is sym-
metrical in this way, and the equations
of physics are too. The equations are
indifferent to where objects are located
in space. Objects can be anywhere or
nowhere, and the laws of physics will
apply to them.

Spontaneous symmetry breaking
happens whenever equations that are
featureless and uniform have solutions

that are not. More generally, sponta-
neous symmetry breaking describes
any case where the solutions of equa-
tions have less symmetry than the
equations themselves.

Here is an example. Imagine that
you have picked up a thin plastic ruler.
Ignoring the marks and labels on the
ruler, you can think of it as uniform
and featureless in the horizontal direc-
tion. Now grab the ruler at its two ends
and gently press inward. The stresses
within the ruler are distributed uni-
formly within it, and it is still uniform
and featureless in the horizontal direc-
tion. However, as you compress the
ruler more and more, it will eventually
give way and buckle.

This buckling is a spontaneous break-
ing of symmetry. At all interior points
away from your fingers, the ruler used
to be flat and patternless. Under com-
pression, a solitary half of a horizontal
wave suddenly emerges; the symmetry
in the direction perpendicular to the
ruler’s original plane has been broken.

Because buckling will be very im-
portant for understanding the shapes
we will discuss later, we should de-
scribe it in a bit more detail. As you
press the ruler inward from its two
ends by a given amount, it must decide
between deforming in two different
ways. It can deform simply by com-
pressing in the horizontal direction—

squeezing, like a spring—without
breaking any symmetry (see Figure 3).
In this configuration the energy of the
ruler is proportional to its thickness,
which we’ll denote as t.

When buckling sets in, the ruler de-
forms mainly by bending. In this type
of deformation, the ruler breaks the or-
thogonal symmetry. It uses the third

2004    May–June     255www.americanscientist.org
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that a leaf or flower—just like a torn sheet of plastic—can use an enhanced, uniform growth at its margins to generate such complex pat-
terns. Examples of wavy edges in nature include, from left to right, some lichens (shown, Sticta limbata), orchids (shown, Schomborgkia
beysiana), sea slugs (represented by Glossodoris hikuerensis) and ornamental cabbage. (Lichen photograph courtesy of Stephen Sharnoff;
sea slug photograph courtesy of Jeff Jeffords.)

Yva Momatiuk and John Eastcott/PhotoResearchers, Inc.

© 2004 Sigma Xi, The Scientific Research Society. Reproduction
with permission only. Contact perms@amsci.org.
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Waves at the edge

The observed curvature of the arcs
when they are flattened is called the
geodesic curvature along these lines—
another property controlled by their
metric. An important observation is
that the geodesic curvature along the
edges of the wavy leaf in Figure 8 is
nearly constant. We do not see any big
variations in this curvature that are
correlated either with the vein struc-
ture or with the waviness of the leaf.
The tissue along the edge grew nearly
uniformly, the growth law was uni-
form, and the leaf grew as a simple
leaf. Like the plastic sheets, it should
have been a simple featureless leaf, but
because of the geometrical limitations
of space, it was forced to break the
symmetry and to adopt a wavy shape.

Wrapping Up
Flowers, like leaves, form complex
buckled shapes. Geometrically, the
main difference between the two is that

leaves form essentially from long, free-
standing strips, whereas flowers have
more complex geometries; the central
tube of a daffodil, for example, closes
on itself like a cylinder. What happens
to such a cylinder or tube when we ap-
ply to it a metric that increases toward
its edge? Just as the leaf grows from the
center, we can think about “growing”
such cylinders starting from a ring of
cells and adding rings on top of one
another. If the rings all have the same
number of cells, they will have the
same diameter and will form a cylin-
der. However, as the number of cells
that form a ring grows exponentially
upward, the metric of the cylinder in-
creases also, leading to an increasing
diameter of the cylinder in its upper
part and to a trumpet-like shape.

As the metric of the flower increases,
the edge of the flower splays outward
more and more. Eventually, it splays
out so much that the edge of the flower

is perpendicular to the direction of the
stem along which it is growing. It
forms a circle with a radius we’ll call R.
That marks the end of this phase of
flower growth. If cells continue to at-
tach to the end of the flower, causing
the metric to grow at an ever-steeper
rate as the flower grows sideways, the
perimeter of the edge will have to be
longer than 2πR. This is known to be
impossible in our Euclidean space
without breaking the axial symmetry.
The edge of the flower must buckle.

In Figure 9a we show the result of an
experimental study using thin tubes
made of polyacrylamide gel. This gel
changes its volume depending on its
environment. It swells in water, but
shrinks in acetone. We used this proper-
ty to change the metric of the tube. First,
we dipped the tube in acetone, causing
it to shrink uniformly. Next we dipped
one end of the tube in water, allowing
the water to diffuse into the tube. As a

2004    May–June     259www.americanscientist.org
© 2004 Sigma Xi, The Scientific Research Society. Reproduction

with permission only. Contact perms@amsci.org.

Figure 7. Can a leaf that is normally flat be induced to become wavy? Here the growth hormone auxin is applied to the edge of a normally flat
leaf from an eggplant, causing enhanced growth only near its margins.  This growth imposes a negative Gaussian curvature on the leaf, simi-
lar to that in the torn plastic sheets in Figures 5 and 6. After 10 days of such a treatment, waves have developed; at 12 and 14 days the waves have
grown bigger, and waves within waves become discernible. (Photographs courtesy of the authors.)

after 12 days after 14 days

before after 10 days

Eran  Sharon

Auxin application



Magnification factor 
3.2

Eran  Sharon et al 2002

Waves at the edge



Thin elastic sheet with

metric ds2 = (1+g(y))2 dx2 + dy2

g(y): quantifies growth rate

Waves at the edge



Up to 5 generations of wrinkles with wavelengths 
λ, λ/3, λ/9, λ/27, λ/81.

Waves at the edge

Audoly & Boudaoud Phys Rev Lett 2003



Form and size of an organism

Duckweeed



The genetics of form

Wildtype 
thale cress 
(Arabidopsis thaliana)

Line with mutation

Finding genes that control teeth morphogenesis 
A number of  discoveries in genetics and molecular biology

T. Blain



Building an organism

Assembly and stiffness of  structural 
elements determines form



Building an organism

Optical microscopy 
Stem cells

Arabidopsis 
flower 
primordium

Mechanical microscopy (AFM) 
Stiffness

Mechanical properties measurements

Atomic Force Microscopy measures  
cell wall stiffness

Highly variable

Atomic force microscope

Stem cells are stiffer 
The mechanics of  structural elements determines form

Milani et al. Plant Physiol. 2014



Microtubules in the shoot apex

Building elongated forms

Hamant et al. Science 2008



•A continuum mechanical model 
of the shoot apex 
‣Much stiffer epidermis 
‣Hydrostatic pressure (turgor) 

•Prediction of force patterns 
‣Microtubules // main tension

What controls the orientation of microtubules?

Building elongated forms

Hamant et al. Science 2008
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Cell wall  
reinforcement in the 
direction of maximal stress

Building elongated forms



Building elongated forms
Fission yeast

Outgrowth occurs when a the outer wall breaks

1 µm 1 µm

Vegetative cell

Spore (note the dark casing) Spore with outgrowth 
(note breakage of casing)

spore



Building elongated forms
Fission yeast cell Mathematical model: 

coupling between structural 
elements and cell polarity

Coordination between biochemistry and biomechanics 
Transition from sphere to elongated shape

Bonazzi et al. Dev. Cell 2014

Bgs4-GFP = cell wall synthesis



Developmental stability
Morphogenesis: organs with 
reproducible forms 

The two hands?

Eric Biot



Developmental stability

A perfect model system: 

Flower size in Arabidopsis varies by about 

5%, despite differences in cell patterns

Ithaca

Sepal

Flowering plants: ideal systems to study robustness of  form



Developmental stability

Growth is spatially heterogeneous
Hervieux et al. Curr. Biol. 2016



Developmental stability

Flowers from a single plant (Arabidopsis)

Mutation affecting robustness of flowers

Figure S1 
 

 
 
Figure S1 vos1 mutants have increased variability in sepal size and shape, related to Figure 
1. 
(A) Flowers taken sequentially from the same WT inflorescence have similar sepals. (B) Flowers 
sequentially from the same vos1 inflorescence (the lower row) have irregular sepal shape and 
size. Note that the vos1 phenotype does not become progressively more irregular. (C) vos1 
mutants have more twisted cauline leaves than WT. (D) Outlines of WT, vos1 and klu sepals 
revealing both size and shape variability (equivalent to Fig. 1E except that the sepals are not 
normalized by area). (E) Areas of mature stage 14 sepals from WT (blue and light blue), vos1 
(magenta; data reproduced from Fig. 1C for comparison) and hormone signaling mutants (white), 
showing that most mutants affecting organ size do not increase variance in area. axr1-12, bri1-6 
and ein2-1 are in the Col (Columbia, blue) background. gai-1 and gin2-1 are in the Ler 
(Landsberg erecta, light blue) background. ***p < 0.001, significant difference in variance from 
WT (F test). In boxplots, the box extends from the lower to upper quartile values of the data, 
with a line at the median, and the whiskers extend past 1.5 of the interquartile range. Scale bars: 
1 mm in A and B, 1 cm in C. 
 

Mutant: cell wall stiffness less heterogeneous. 

Spatiotemporal variability promotes flower robustness!

Genetic screen for mutants in variability

Hong et al. Dev. Cell 2016

Now: variability in gene expression and robustness of  development



Conclusions

From simplified systems to living systems 

Investigating morphogenesis:  
tools from experimental/theoretical physics 
in addition to genetics/molecular biology 

There is biological information in variability

AND
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